Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory
نویسندگان
چکیده
Efficient energy use has constrained the evolution of nervous systems. However, it is unresolved whether energy metabolism may resultantly regulate major brain functions. Our observation that Drosophila flies double their sucrose intake at an early stage of long-term memory formation initiated the investigation of how energy metabolism intervenes in this process. Cellular-resolution imaging of energy metabolism reveals a concurrent elevation of energy consumption in neurons of the mushroom body, the fly's major memory centre. Strikingly, upregulation of mushroom body energy flux is both necessary and sufficient to drive long-term memory formation. This effect is triggered by a specific pair of dopaminergic neurons afferent to the mushroom bodies, via the D5-like DAMB dopamine receptor. Hence, dopamine signalling mediates an energy switch in the mushroom body that controls long-term memory encoding. Our data thus point to an instructional role for energy flux in the execution of demanding higher brain functions.
منابع مشابه
Insulin signaling is acutely required for long-term memory in Drosophila
Memory formation has been shown recently to be dependent on energy status in Drosophila. A well-established energy sensor is the insulin signaling (InS) pathway. Previous studies in various animal models including human have revealed the role of insulin levels in short-term memory but its role in long-term memory remains less clear. We therefore investigated genetically the spatial and temporal...
متن کاملLocalization of long-term memory within the Drosophila mushroom body.
The mushroom bodies, substructures of the Drosophila brain, are involved in olfactory learning and short-term memory, but their role in long-term memory is unknown. Here we show that the alpha-lobes-absent (ala) mutant lacks either the two vertical lobes of the mushroom body or two of the three median lobes which contain branches of vertical lobe neurons. This unique phenotype allows analysis o...
متن کاملTequila, a neurotrypsin ortholog, regulates long-term memory formation in Drosophila.
Mutations in the human neurotrypsin gene are associated with autosomal recessive mental retardation. To further understand the pathophysiological consequences of the lack of this serine protease, we studied Tequila (Teq), the Drosophila neurotrypsin ortholog, using associative memory as a behavioral readout. We found that teq inactivation resulted in a long-term memory (LTM)-specific defect. Af...
متن کاملThe long-term memory trace formed in the Drosophila α/β mushroom body neurons is abolished in long-term memory mutants.
A prior screen identified dozens of Drosophila melanogaster mutants that possess defective long-term memory (LTM). Using spaced olfactory conditioning, we trained 26 of these mutant lines to associate an odor cue with electric shock and then examined the memory of this conditioning 24 h later. All of the mutants tested revealed a deficit in LTM compared to the robust LTM observed in control fli...
متن کاملMushroom Body Ablation Impairs Short-Term Memory and Long-Term Memory of Courtship Conditioning in Drosophila melanogaster
We have evaluated the role of the Drosophila mushroom bodies (MBs) in courtship conditioning, in which experience with mated females causes males to reduce their courtship toward virgins (Siegel and Hall, 1979). Whereas previous studies indicated that MB ablation abolished learning in an olfactory conditioning paradigm (deBelle and Heisenberg, 1994), MB-ablated males were able to learn in the c...
متن کامل